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Results on the energy-relaxation rates of dense two-temperature aluminum, carbon,
and silicon plasmas close to liquid-metal conditions
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We present results for the electron-ion energy relaxation coupling congig(its,T;,«) for aluminum,
carbon, and silicon plasmas at several electron and ion temperdturéls, of experimental interest. The
calculations use the Fermi golden rule and the Landau-Spitzer model valid at weak electron-ion coupling, as
well as the coupled-mode approach suitable for strong coupling. A physically motivated simple derivation of
the coupled-mode energy relaxation formula for two-component charged fluids is presented. While the com-
monly used weak-coupling theories predict relaxation constants relatively independent of the ion temperature,
the strong-coupling theory predicts energy relaxation constants that become smaller by an order of magnitude
as the ion temperature is lowered.
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[. INTRODUCTION calculations that use point-charge models for ions and other
simplifications, we use first-principles pseudopotentials, real-
Electron-ion systems having a “two-temperature” distri- istic frequency, and momentum-dependent screening func-
bution are an important class of nonequilibrium systems thafions, etc., as required by the detailed theory. Our previous
can be created using shock waves, intense-laser pulses, wmerical resultgfor Al with the ions held at the melting
injection of strongly biased electrons into gated microstruciemperaturg suggested that the ER is significantly smaller
tures used in electronic devices. The two-temperature systethan the prediction from the usual Landau-Spitde3) for-
is a result of the different time scales > 7., for ion-ion ~ mula[2]. Our calculations confirm thaf) the FGR results
(i-i), and electron-electrorefe) relaxation processes. If the are smaller than the Landau-Spitzer estimates by about a
system is created by ultrafast laser pulses that deposit enerdgctor of 2 to 3 for low temperaturegji) when coupled
in the electron subsystem, rapid electron-electron equilibramodes are included, the ER for aluminum plasmas near the
tion produces a local electron temperatiige while the ions ~ Melting point is confirmed to be smaller by an order of mag-
remain at essentially the initial temperatufe. If shock nitude. The calculations for C and Si systems show that the
waves are used, the ion subsystem heats up and slowly ekesults for aluminum are quite typical. They aretopical
changes energy to the colder electrons. Equivalent thermalinterestsince several experimental studies point to signifi-
zation problems are encountered in astrophysical and plarfantly lower ER rates than those predicted by the traditional

etary research. calculationd3].
For two weakly coupled subsystems, transition rates can
be calculated simply, using the Fermi golden (H&R) that Il. THEORY

evaluates the rate as a product of the initial and final densi-
ties of states and the square of the matrix element couplin%1

the two systems. The FGR result is a second-order perturb egeneracy-corrected Landau-SpitzébLS) model, the

tion expansion in the electron-ion interactibi, . The FGR Fermi golden rule resulfEGR), a simplified form derived

is not applicable to the strongly interacting case. The prob; )
lem is still tractable if the “coupled-modes” resulting from from there, and finally, the coupled-mode form(&:M). The

e sirong coupling coud be_compacty idenied. TherSF, 1 Ol 158 el peeuopoteils e sereenng
electron-screened ion excitations in liquid metals, and i : 9 '

dense plasmas, manifest themselves as ion-acoustic mo ice many variants of LS and DLS are used in the litera-

that are in fact such “coupled modes.” As such, we presenteiure’. with different, somewhatd hocways of incorporating
a theory of energy relaxation in interacting plasmas using th he ion temperaiure, electron degeneracy, the form of the

nonequilibrium method of Keldysh, Martin, and Schwinger, collision frequency, etc., we will explicitly list the exact

. . ) ~ . <. forms used by us. The derivation of the CM formula will be
23;()'3;%?;?:}2&5 handling the coupled-mode situation in E;given in the Appendix. Thus, the following formulas define

In this Rapid Communication we revisit the theory of en- thev\t/her?retlcaeleric;idfls u_seld hlf{ehre. h the elect
ergy relaxation ER) and present a more physical analysis of . € have see=n=—me=1, alihough the electron masg,
the coupled-mode problem. We make calculations for C, AIWVill Sometimes be displayed for clarity. The ER rate per unit
and Si, and examine the ER rates predicted by various they©lume (containingn electrons anc ions of chargeZ per

retical formulations of increasing generality. Unlike other unit volume is defined byR=dE./dt, whereE. is the en-
ergy in the electron subsystem at time

The temperaturerelaxation rate can be calculated using a
*Electronic address: chandre@cm1.phy.nrc.ca mapping of T, to an equivalentlassical-fluidtemperature

In order to compare and contrast the available theoretical
odels, we consider the Landau-SpitzgrS) model, a
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T.1 (see Ref[4]). Then theE. is related to a classical kinetic Xl 0,0, T)=x2H1-V (D[1-G (DX} (5
energyK=(3/2)nT¢, with Tei=(T5+T2H)Y2 and T4 is a
quantum correction given by In the above, the zeroth-order response function is denoted
by XST, where thew,q, T dependence is suppressed for brev-
Tq/Er=1/(a+byrgtcry). (1) ity. This is the usual Lindhard function for electrons, and the

plasma dispersion function for ions. More details of the
The Fermi energyr is 1/(22%2), wherea = (4/97)3and  local-field correctiorg. ., etc., are given in Ref$1,4].
. is the electron-sphere radius such thatréz?‘l The The electron-ion interaction is given as a weak pseudopo-
s .

P _ __ tential having the fornU;¢(q) = —Z;V{M,, whereV, is the
;(r)]gsctingsogggearmg in BqL) area=1.594, b 0.3160, Coulomb potential 4/q?, and M, is the matrix element.

The main temperature dependence in the ER rate can bTehe appropriate ~pseudopotentials, derived from first-
factored out by defining the ER-coupling constant

principles calculations, are given in R¢L].
9er(To.T: ), given byger=R/(T.—T)). Itis expressed in The FGR result, cast into a convenient form, is given by
WK~1m 2 of the material.

[1]
Reor=2 g Uie(®)|*0A%(d,@)A'(0,0) AN, (6)
A. Landau-Spitzer formula

The Landau-Spitzefl.S) formula for the energy loss rate ANG'=N(w/Te) =N(w/T)). (7

(ELR) can be written as .
The mode occupationS(w/T,) are Bose factors.

wlwl(Te—Tilog(A)
(27 Te/ M+ 27T, IM;)3?

) D. Simplified form of the FGR result

A simplified form of the FGR, presented in detail by
This is simply the Rutherford formula for Coulomb scatter- Hazaket al. [7] is summarized below. If the temperatures
ing of particles with Maxwellian velocity distributions a, ~ and densities are such thai, ,/T;< unity, the mode-
andT, ; for example, (n/27T.)*2is the normalization con- ©0ccupation numbers may be expanded as
stant of the Maxwelhan d|str|but|on for electrons. The N(/Te)—N(/T) = (Te—T)/o. )
plasma frequencies,, where r=e,i characterize each
subsys_tem. In our numerlcal work the Coulomb logarithm  1he ion spectral functiod\' is limited to the low-energy
log(A) is calculated as in Lee and Mof8]. regime of the ion-plasma frequency, while the electron spec-
tral function A® lies at the much higher energies of the
B. Degeneracy corrected Landau-Spitzer formula electron-plasma frequenczyg. Hence,A® can also be ap-
The Maxwellian distribution for electrons can be replacedProximated by a frequency-moment expansion ahoe0.

by a Fermi distribution to correct for degeneracies. Such £l the first moment is retained. Siné(q, ) is antisym-
degeneracy-corrected Landau-SpitzBILS) form is given ~Metric inw, we have

by A%(q, ) = 0 IA%(Q, )] d0] 0. ©
RoLs=Ris/[Vr(l+e “e/Te)F e/ Te)]. (3

R s=

Hence, the sum over mode frequencied €an be evaluated
using thef-sum rule for the ionic subsystem.
The result is a simplified FGR formyla

/|8(q,0)|2, (10

wheree(q,0) is the static electron screening function given
C. The Fermi golden rule formula (FGR) by

Here u is the electron chemical potential akd(X) is the
Fermi integral. This form, withl; set to zero, has been dis-
cussed by BrysK6]. When T;=0, the resulting collision
frequency is consistent with that given by Lee and More in Re-sunm= @ip2 qVglMgl?
their resistivity calculation.

&XOe
Jw

Im

In strongly coupled systems, the excitations involve . e 0
single-particle and collective modes. The energy transfer £(q,00=1-V4(1-GgIRexedq,0.
from the modes o;; hotr:er syster?sr':o the mlodesbof the co?lle]t:he Rex®.(q,0) in £(q,0) can be adequately approximated
system is given the FGR if the coupling between the ee s '

S));stems, dgnoted gyie(q), is weak, even i?thgﬂtrasystem by theq=0 value, but the detailed dispersion of Inye. at
coupling is strong. The two subsystems are characterized Hfg‘r';f -rlr—1|(n(’:1]:csF\)tﬁta[E]S) Ifi rrr]rfﬁlieii f(c:)(;ni;?r:?;aC)rquggteslillrggml‘ﬁtii
their spectral functions for density excitatios,(w,q,T,). . but diff ¢ it in h 9 113/2

These are evaluated from the imaginary parts opfe- 0N SPectrum, but diifers from it in having no /" term,

(11

component-fluidype response functions, and in invoking the detailed dispersion ofy, at low ener-
gies. For most three-dimensional plasmgg, nearo=0 is
A0, T)=—2Imy,(q,0,T,), (4)  single-particle-like as the collective modes beginvat,.
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E. The coupled-mode formula

The electron-ion interaction is not particularly weak, es-
pecially if T; is small andZ>1. The unscreenegti coupling
constantl";, is of the order of [.J';j)*? and tends to be
large in strongly coupled systems. This should not be con-_
fused with the usage where theei interaction in, say, Al,
described by a pseudopotential,(isgitimately taken to be
“weak,” when considering the interaction with a 1single ion.
Then the ion temperature does not play a role &hg is
essentially an external potenti@.g., as in a band structure

calculation.

The coupled-mode picture is simply the two-component .
picture of a plasma or a liquid metal where the ion-density 3.+10 ' ' ' ' '
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fluctuations have become ion-acoustic modes. The electror T, (ev)
excitation modes and the ion modes are both determined by

the zeros of a single denominator. We have
Xrr= X1V (K (1= G, x5 1D,
D=DeeDji—Dei,
D,.=[1-V,1-G.)x7,

Dei=|Veil 2X X2 1= Gie) (1= Ge)).

12
13
(14)

(19

FIG. 1. Electron-ion coupling constant for Al calculated from
the theories discussed here are showril{er0.08 eV, i.e, melting
temperature of Al, andl;,=10 eV. The labels LS, DLSf-sum,
FGR, and CM refer to the Landau-SpitZdtq. (2)], degeneracy-
corrected LS[Eq. (3)], Fermi golden ruleg/Eq. (6)], f-sum [Eqg.
(10)], and the coupled-mode forpkq. (16)], respectively. The LS,
DLS curves(dashesare very weakly dependent ar . Thef sum
(crossegis independent of ;. The FGR afl;=10 eV follows the
crosses, while th@;=0.08 eV departs slightly from it. The solid
line and squares show the CM results.

The energy relaxation occurs from hot coupled modes

(which are like electron modes Tf, is the higher tempera-
ture) to cooler coupled modegvhich are like ion modes

The ER rate within the CM picture is given by

AN®'A%(q,0)A'(q,®)

Rem=2q.0/Uie()|%0 :
o ° |1—|Uie(@)]?xeexiil®

This reduces to the FGR form if th&J,.(q)|? term which

(16)

sensitive to theT;. The CM curve atT;=0.081 eV lies
much below the curve &t;=10 eV. The change of gradient
in the T;=0.081 eV, the CM curve near 10 eV signals the
end of the constanZ =3 ionization. The sensitivity of the
CM description to the ion temperature is clear, sincdlat
=0.081 eV andT.=40 eV, the electron-ion coupling con-
stantl'; is of the order of 33 for Al. They.,, andgrcr are
calculated with thenitial ion distribution held fixed, while

appears in the denominator is negligible compared to unity.Te iS increased. Whilegegr is almost independent of the

A proof of this formula was given in Refl] using the

initial ion distribution, g.,, depends on the initial conditions

Keldysh contour technique. The Keldysh approach is excesset by the experiment.
sively abstract, and does not reveal an underlying physical Table | compares the ER-coupling constants for CT;at
picture. We have succeeded in constructing a simpler, more0.5 eV, i.e., just above its melting point, and for Al and Si

intuitive derivation which is given in the Appendix.

IIl. NUMERICAL RESULTS AND DISCUSSION

with T;=0.15 eV, i.e., just above the melting point of Si.
The C and Si pseudopotentials correctly reproduce the short-

range structure of the molten elemef. The remarkable

feature seen here is that the differences in the two elements

In Fig. 1 we show the ER coupling constants calculateda| and Sido nottranslate into a big difference in the cou-
using the theoretical models discussed in the preceding segting constants.
tion. The results are 'for aluminum at unit compression._ Two  Energy relaxation rates for typical elements at different
values ofT; are considered, i.eT;=0.081 and 10 eV, while  compressions, and for any reasonable range of valu@g of
the electron temperature is varied. The Landau-Spitzer estgnd T, may be calculated by remotely accessing our com-

mates(dashed curves in the figyref g, 5 are virtually inde-

pendent of T;, since this appears in LS asT(M,

+T./mg)¥? and is unimportant here. THesum evaluation
of the FGR vyieldg);_s,m,» Shown as crosses in the figure. It is
completely independent of;, in contrast to the Landau-
Spitzer form. This is because tHesum approach is valid

puter codes. Interested researchers may do their own calcu-
lations via web acced4.0].

IV. CONCLUSION

We have presented results for the energy-relaxation cou-

only if the ion spectrum lies far below the electron spectrumpling constants of Al, C, and Si plasmas. The results show
while no such restriction applies to the LS formula. The full that the energy relaxation ratee, from the coupled-mode

FGR calculation shows a small dependencélpnas shown

approach is probably an order of magnitude smalléat

in the figure(dotted line,T;=0.081 eV; dotted-dashed line, melting-point temperaturgghan those obtained from tradi-

T;=10 eV). In contrast, the coupled-mode resylt, is very

tional calculations. The differences between the coupled-
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TABLE I. Energy-relaxation coupling constaggg for Al and Si at 2.7 and 2.59 g/cc, respectively, with
T,=0.15 eV (effectively, the meltimg point of $i For carbon, density is 2.0 g/cc, aig=0.5 eV, effec-
tively its melting point. Results from the Landau-Spitze8) and coupled-modéCM) theories are given in
W K™tmd The S(k,w) is constructed from the hypernetted-chain equation; cf. Réf.

LS (10° WK™ tm™3) CM (10° WK™ 1m™3)

T, C Al Si C Al Si

3 1.4500 0.1998 0.2794 0.3267 0.02024 0.01996
5 1.8053 0.2360 0.3423 0.3326 0.02928 0.03010
10 2.2059 0.2210 0.3968 0.3325 0.03774 0.04885
15 2.2096 0.2079 0.3789 0.3156 0.04419 0.05672
20 1.7490 0.2071 0.2943 0.2960 0.04489 0.05798

mode form and the Fermi golden rule results disappear at Rcmai:Eq,w|Uie(Q)|2Ai(Qaw)AcmWANcm,Tia

sufficiently high ion temperatures.
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APPENDIX: A SIMPLER DERIVATION OF THE

Rem=Re_em=Rem_i - Al
COUPLED-MODE FORMULA em TrememTremet (AL)

The electrongi.e, effectively the continuum electronat ~ This arises when the coupled-mode population becomes
temperaturdl ., transfer energy to coupled modémsically
the screening electrons closely associated with the ion ﬁ(w/Ti)Ai(q,w)+W(w/Te)Ae(q,w)
mode$. Their mode-occupation number is denoted by Nem(w) = _ .
N.n(®), depends on botfi, andT;, and is as yet unspeci- Al(q,0)+A%(q,0)
fied. We apply the Fermi golden rule to this process and (A2)
write the energy transfer rate as

This is Eq.(46) of Ref.[1] obtained there using a nonequi-

Reﬂcm:Eq,wlUie(q)lee(qiw)Acm(w)wANTe,cmi librium Green’s-function technique based on the Keldysh
contour integration. The present physical picture is not
ANTe,cm:[N(w/Te)_Ncm(w)]- needed in the Green’s-function approach. It follows that un-

der steady-state conditions, the energy relaxation rate is
The spectral functiod\;(w)=—2 Im x;; . This involves the given byR.,, which is evaluated using the above expression
coupled-mode response function for ions, viz., E§2).  for N.,,. This easily reduces to E¢60) of Ref.[1]. Thus we
Similarly, the transfer of energy from the coupled modes tosee that coupled modes, being hotter than bare ions, and
the ion subsystenti.e, basically the nucleii and core elec- colder than bare electrons, create an energy-relaxation bottle-
trong is neck.
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