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Results on the energy-relaxation rates of dense two-temperature aluminum, carbon,
and silicon plasmas close to liquid-metal conditions
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We present results for the electron-ion energy relaxation coupling constantsgei(Te ,Ti ,k) for aluminum,
carbon, and silicon plasmas at several electron and ion temperaturesTi , Te of experimental interest. The
calculations use the Fermi golden rule and the Landau-Spitzer model valid at weak electron-ion coupling, as
well as the coupled-mode approach suitable for strong coupling. A physically motivated simple derivation of
the coupled-mode energy relaxation formula for two-component charged fluids is presented. While the com-
monly used weak-coupling theories predict relaxation constants relatively independent of the ion temperature,
the strong-coupling theory predicts energy relaxation constants that become smaller by an order of magnitude
as the ion temperature is lowered.
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I. INTRODUCTION

Electron-ion systems having a ‘‘two-temperature’’ dist
bution are an important class of nonequilibrium systems
can be created using shock waves, intense-laser pulse
injection of strongly biased electrons into gated microstr
tures used in electronic devices. The two-temperature sys
is a result of the different time scalest i i .tee for ion-ion
( i -i ), and electron-electron (e-e) relaxation processes. If th
system is created by ultrafast laser pulses that deposit en
in the electron subsystem, rapid electron-electron equilib
tion produces a local electron temperatureTe , while the ions
remain at essentially the initial temperatureTi . If shock
waves are used, the ion subsystem heats up and slowly
changes energy to the colder electrons. Equivalent therm
zation problems are encountered in astrophysical and p
etary research.

For two weakly coupled subsystems, transition rates
be calculated simply, using the Fermi golden rule~FGR! that
evaluates the rate as a product of the initial and final de
ties of states and the square of the matrix element coup
the two systems. The FGR result is a second-order pertu
tion expansion in the electron-ion interactionUie . The FGR
is not applicable to the strongly interacting case. The pr
lem is still tractable if the ‘‘coupled-modes’’ resulting from
the strong coupling could be compactly identified. T
electron-screened ion excitations in liquid metals, and
dense plasmas, manifest themselves as ion-acoustic m
that are in fact such ‘‘coupled modes.’’As such, we presen
a theory of energy relaxation in interacting plasmas using
nonequilibrium method of Keldysh, Martin, and Schwing
as it is capable of handling the coupled-mode situation i
rigorous manner@1#.

In this Rapid Communication we revisit the theory of e
ergy relaxation~ER! and present a more physical analysis
the coupled-mode problem. We make calculations for C,
and Si, and examine the ER rates predicted by various th
retical formulations of increasing generality. Unlike oth
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calculations that use point-charge models for ions and o
simplifications, we use first-principles pseudopotentials, re
istic frequency, and momentum-dependent screening fu
tions, etc., as required by the detailed theory. Our previ
numerical results~for Al with the ions held at the melting
temperature! suggested that the ER is significantly smal
than the prediction from the usual Landau-Spitzer~LS! for-
mula @2#. Our calculations confirm that~i! the FGR results
are smaller than the Landau-Spitzer estimates by abo
factor of 2 to 3 for low temperatures;~ii ! when coupled
modes are included, the ER for aluminum plasmas near
melting point is confirmed to be smaller by an order of ma
nitude. The calculations for C and Si systems show that
results for aluminum are quite typical. They are oftopical
interest since several experimental studies point to sign
cantly lower ER rates than those predicted by the traditio
calculations@3#.

II. THEORY

In order to compare and contrast the available theoret
models, we consider the Landau-Spitzer~LS! model, a
degeneracy-corrected Landau-Spitzer~DLS! model, the
Fermi golden rule result~FGR!, a simplified form derived
from there, and finally, the coupled-mode formula~CM!. The
FGR and CM use realistic pseuopotentials and screen
functions. The CM is the most general form considered he
Since many variants of LS and DLS are used in the lite
ture, with different, somewhatad hocways of incorporating
the ion temperature, electron degeneracy, the form of
collision frequency, etc., we will explicitly list the exac
forms used by us. The derivation of the CM formula will b
given in the Appendix. Thus, the following formulas defin
the theoretical models used here.

We have sete5\5me51, although the electron massme
will sometimes be displayed for clarity. The ER rate per u
volume ~containingn̄ electrons andr̄ ions of chargeZ per
unit volume! is defined byR5dEe /dt, whereEe is the en-
ergy in the electron subsystem at timet.

The temperature-relaxation rate can be calculated using
mapping ofTe to an equivalentclassical-fluid temperature
©2001 The American Physical Society01-1
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Tc f ~see Ref.@4#!. Then theEe is related to a classical kineti
energyK5(3/2)n̄Tc f , with Tc f5(Te

21Tq
2)1/2, and Tq is a

quantum correction given by

Tq /EF51/~a1bAr s1crs!. ~1!

The Fermi energyEF is 1/(2a2r s
2), wherea5(4/9p)1/3 and

r s is the electron-sphere radius such that 4pr s
35n̄21. The

constants appearing in Eq.~1! are a51.594, b520.3160,
andc50.0240.

The main temperature dependence in the ER rate ca
factored out by defining the ER-coupling consta
gER(Te ,Ti ,k), given bygER5R/(Te2Ti). It is expressed in
W K21 m 23 of the material.

A. Landau-Spitzer formula

The Landau-Spitzer~LS! formula for the energy loss rat
~ELR! can be written as

RLS5
v ip

2 vep
2 ~Te2Ti !log~L!

~2pTe /me12pTi /Mi !
3/2

. ~2!

This is simply the Rutherford formula for Coulomb scatte
ing of particles with Maxwellian velocity distributions atTe
andTi ; for example, (me/2pTe)

3/2 is the normalization con-
stant of the Maxwellian distribution for electrons. Th
plasma frequenciesvtp , where t5e,i characterize each
subsystem. In our numerical work the Coulomb logarith
log(L) is calculated as in Lee and More@5#.

B. Degeneracy corrected Landau-Spitzer formula

The Maxwellian distribution for electrons can be replac
by a Fermi distribution to correct for degeneracies. Suc
degeneracy-corrected Landau-Spitzer~DLS! form is given
by

RDLS5RLS /@Ap~11e2me /Te!F1/2~me /Te!#. ~3!

Hereme is the electron chemical potential andF1/2(x) is the
Fermi integral. This form, withTi set to zero, has been dis
cussed by Brysk@6#. When Ti50, the resulting collision
frequency is consistent with that given by Lee and More
their resistivity calculation.

C. The Fermi golden rule formula „FGR…

In strongly coupled systems, the excitations invol
single-particle and collective modes. The energy trans
from the modes of hotter systems to the modes of the co
system is given by the FGR if the coupling between
systems, denoted byUie(q), is weak, even if theintrasystem
coupling is strong. The two subsystems are characterize
their spectral functions for density excitations,At(v,q,Tt).
These are evaluated from the imaginary parts ofone-
component-fluidtype response functions,

At~q,v,Tt!522 Imxtt~q,v,Tt!, ~4!
03540
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xtt~v,q,Tt!5xtt
0 /$12Vtt~q!@12Gtt~q!#xtt

0 %. ~5!

In the above, the zeroth-order response function is deno
by xtt

0 , where thev,q,T dependence is suppressed for bre
ity. This is the usual Lindhard function for electrons, and t
plasma dispersion function for ions. More details of t
local-field correctionGtt , etc., are given in Refs.@1,4#.

The electron-ion interaction is given as a weak pseudo
tential having the formUie(q)52ZiVqMq , whereVq is the
Coulomb potential 4p/q2, and Mq is the matrix element.
The appropriate pseudopotentials, derived from fir
principles calculations, are given in Ref.@1#.

The FGR result, cast into a convenient form, is given
@1#

RFGR5Sq,vuUie~q!u2vAe~q,v!AI~q,v!DNv
e,i , ~6!

DNv
e,i5N~v/Te!2N~v/Ti !. ~7!

The mode occupationsN(v/Tt) are Bose factors.

D. Simplified form of the FGR result

A simplified form of the FGR, presented in detail b
Hazak et al. @7# is summarized below. If the temperature
and densities are such thatvt,p /Ti! unity, the mode-
occupation numbers may be expanded as

N~v/Te!2N~v/Ti !5~Te2Ti !/v. ~8!

The ion spectral functionAi is limited to the low-energy
regime of the ion-plasma frequency, while the electron sp
tral function Ae lies at the much higher energies of th
electron-plasma frequencyvp

e . Hence,Ae can also be ap-
proximated by a frequency-moment expansion aboutv50.
Only the first moment is retained. SinceAe(q,v) is antisym-
metric in v, we have

Ae~q,v!5v@]Ae~q,v!/]v#v50 . ~9!

Hence, the sum over mode frequencies (v) can be evaluated
using thef-sum rule for the ionic subsystem.

The result is a simplified FGR formula,

Rf -sum5v ipSqVquMqu2F Im
]x0e

]v G Y u«~q,0!u2, ~10!

where«(q,0) is the static electron screening function giv
by

«~q,0!512Vq~12G q
ee!Rexee

0 ~q,0!. ~11!

The Rexee
0 (q,0) in «(q,0) can be adequately approximate

by theq50 value, but the detailedq dispersion of Imxee at
finite T ~cf., Ref. @8#! is needed for accuracy. The simplifie
form mimics the LS formula in containing no details of th
ion spectrum, but differs from it in having no 1/Ti

3/2 term,
and in invoking the detailedq dispersion ofxee at low ener-
gies. For most three-dimensional plasmas,xee nearv50 is
single-particle-like as the collective modes begin atvep .
1-2
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E. The coupled-mode formula

The electron-ion interaction is not particularly weak, e
pecially if Ti is small andZ.1. The unscreenede-i coupling
constantG ie is of the order of (GeeG i i )

1/2 and tends to be
large in strongly coupled systems. This should not be c
fused with the usage where thee-i interaction in, say, Al,
described by a pseudopotential, is~legitimately! taken to be
‘‘weak,’’ when considering the interaction with a ısingle io
Then the ion temperature does not play a role andUei is
essentially an external potential~e.g., as in a band structur
calculation!.

The coupled-mode picture is simply the two-compon
picture of a plasma or a liquid metal where the ion-dens
fluctuations have become ion-acoustic modes. The elec
excitation modes and the ion modes are both determine
the zeros of a single denominator. We have

xtt5xtt
0 @12Vt8t8~k!~12Gt8t8#xt8t8

0
#/D, ~12!

D5DeeDii 2Dei , ~13!

Dtt5@12Vtt12Gtt!xtt
0 ], ~14!

Dei5uVeiu2x i i
0xee

0 ~12Gie!~12Gei!. ~15!

The energy relaxation occurs from hot coupled mod
~which are like electron modes ifTe is the higher tempera
ture! to cooler coupled modes~which are like ion modes!.
The ER rate within the CM picture is given by

Rcm5Sq,vuUie~q!u2v
DNv

e,iAe~q,v!AI~q,v!

u12uUie~q!u2xeex i i u2
. ~16!

This reduces to the FGR form if theuUie(q)u2 term which
appears in the denominator is negligible compared to un

A proof of this formula was given in Ref.@1# using the
Keldysh contour technique. The Keldysh approach is exc
sively abstract, and does not reveal an underlying phys
picture. We have succeeded in constructing a simpler, m
intuitive derivation which is given in the Appendix.

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 we show the ER coupling constants calcula
using the theoretical models discussed in the preceding
tion. The results are for aluminum at unit compression. T
values ofTi are considered, i.e.,Ti50.081 and 10 eV, while
the electron temperature is varied. The Landau-Spitzer e
mates~dashed curves in the figure! of gLS are virtually inde-
pendent of Ti , since this appears in LS as (Ti /Mi
1Te /me)

3/2, and is unimportant here. Thef-sum evaluation
of the FGR yieldsgf -sum, shown as crosses in the figure. It
completely independent ofTi , in contrast to the Landau
Spitzer form. This is because thef-sum approach is valid
only if the ion spectrum lies far below the electron spectru
while no such restriction applies to the LS formula. The f
FGR calculation shows a small dependence onTi , as shown
in the figure~dotted line,Ti50.081 eV; dotted-dashed line
Ti510 eV). In contrast, the coupled-mode resultgcm is very
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sensitive to theTi . The CM curve atTi50.081 eV lies
much below the curve atTi510 eV. The change of gradien
in the Ti50.081 eV, the CM curve near 10 eV signals t
end of the constantZ53 ionization. The sensitivity of the
CM description to the ion temperature is clear, since atTi
50.081 eV andTe540 eV, the electron-ion coupling con
stantGei is of the order of 33 for Al. Thegcm andgFGR are
calculated with theinitial ion distribution held fixed, while
Te is increased. WhilegFGR is almost independent of th
initial ion distribution,gcm depends on the initial condition
set by the experiment.

Table I compares the ER-coupling constants for C, atTi
50.5 eV, i.e., just above its melting point, and for Al and
with Ti50.15 eV, i.e., just above the melting point of S
The C and Si pseudopotentials correctly reproduce the sh
range structure of the molten elements@9#. The remarkable
feature seen here is that the differences in the two elem
Al and Si do not translate into a big difference in the cou
pling constants.

Energy relaxation rates for typical elements at differe
compressions, and for any reasonable range of values oTe
and Ti may be calculated by remotely accessing our co
puter codes. Interested researchers may do their own ca
lations via web access@10#.

IV. CONCLUSION

We have presented results for the energy-relaxation c
pling constants of Al, C, and Si plasmas. The results sh
that the energy relaxation rate~i.e, from the coupled-mode
approach! is probably an order of magnitude smaller~at
melting-point temperatures! than those obtained from trad
tional calculations. The differences between the coupl

FIG. 1. Electron-ion coupling constant for Al calculated fro
the theories discussed here are shown forTi50.08 eV, i.e, melting
temperature of Al, andTi510 eV. The labels LS, DLS,f-sum,
FGR, and CM refer to the Landau-Spitzer@Eq. ~2!#, degeneracy-
corrected LS@Eq. ~3!#, Fermi golden rule@Eq. ~6!#, f-sum @Eq.
~10!#, and the coupled-mode form@Eq. ~16!#, respectively. The LS,
DLS curves~dashes! are very weakly dependent onTi . The f sum
~crosses! is independent ofTi . The FGR atTi510 eV follows the
crosses, while theTi50.08 eV departs slightly from it. The solid
line and squares show the CM results.
1-3
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TABLE I. Energy-relaxation coupling constantgER for Al and Si at 2.7 and 2.59 g/cc, respectively, wi
Ti50.15 eV~effectively, the meltimg point of Si!. For carbon, density is 2.0 g/cc, andTi50.5 eV, effec-
tively its melting point. Results from the Landau-Spitzer~LS! and coupled-mode~CM! theories are given in
W K21 m3. TheS(k,v) is constructed from the hypernetted-chain equation; cf. Ref.@1#.

LS (1019 W K21 m23) CM (1019 W K21 m23)
Te C Al Si C Al Si

3 1.4500 0.1998 0.2794 0.3267 0.02024 0.01996
5 1.8053 0.2360 0.3423 0.3326 0.02928 0.03010

10 2.2059 0.2210 0.3968 0.3325 0.03774 0.04885
15 2.2096 0.2079 0.3789 0.3156 0.04419 0.05672
20 1.7490 0.2071 0.2943 0.2960 0.04489 0.05798
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mode form and the Fermi golden rule results disappea
sufficiently high ion temperatures.

ACKNOWLEDGMENTS

The author thanks Franc¸ois Perrot for his comments o
the manuscript.

APPENDIX: A SIMPLER DERIVATION OF THE
COUPLED-MODE FORMULA

The electrons~i.e, effectively the continuum electrons! at
temperatureTe , transfer energy to coupled modes~basically
the screening electrons closely associated with the
modes!. Their mode-occupation number is denoted
Ncm(v), depends on bothTe andTi , and is as yet unspeci
fied. We apply the Fermi golden rule to this process a
write the energy transfer rate as

Re→cm5Sq,vuUie~q!u2Ae~q,v!Acm~v!vDNTe ,cm ,

DNTe ,cm5@N~v/Te!2Ncm~v!#.

The spectral functionAcm(v)522 Imx i i . This involves the
coupled-mode response function for ions, viz., Eq.~12!.
Similarly, the transfer of energy from the coupled modes
the ion subsystem~i.e, basically the nucleii and core ele
trons! is
i,

d

03540
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o

Rcm→ i5Sq,vuUie~q!u2Ai~q,v!AcmvDNcm,Ti
,

DNcm,Ti
5@Ncm~v!2N~vq /Ti !#.

When a steady state is reached, the rates of transferRe→cm
andRcm→ i become equal:

Rcm5Re→cm5Rcm→ i . ~A1!

This arises when the coupled-mode population becomes

Ncm~v!5
N̄~v/Ti !A

i~q,v!1N̄~v/Te!A
e~q,v!

Ai~q,v!1Ae~q,v!
.

~A2!

This is Eq.~46! of Ref. @1# obtained there using a nonequ
librium Green’s-function technique based on the Keldy
contour integration. The present physical picture is n
needed in the Green’s-function approach. It follows that u
der steady-state conditions, the energy relaxation rate
given byRcm , which is evaluated using the above express
for Ncm . This easily reduces to Eq.~50! of Ref. @1#. Thus we
see that coupled modes, being hotter than bare ions,
colder than bare electrons, create an energy-relaxation bo
neck.
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